Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Metric Space

Subjec	t Code: 4SC05MES1	Branch: B.Sc. (Mathemati	Branch: B.Sc. (Mathematics)		
Semest	ter: 5 Date: 20/12/2021	Time: 11:00 To 02:00	Marks: 70		
(2) (3)	tions: Use of Programmable calculator & any Instructions written on main answer be Draw neat diagrams and figures (if new Assume suitable data if needed.	ook are strictly to be obeyed.	ohibited.		
Q-1	Attempt the following questions	5:	[14]		
	 a) Let (X, d) be a discrete metric spatial for the spatial of the spatial for the spa	ace and $r > 1$, then $S_r(x) = $. (01)		
	 4) [0,1] b) Which of the following subset of (0,1] R Ø 	R is neither open nor closed?	(01)		
	4) None of these c) If $E = (1,3)$ is subset of metric sp 1) (1,3] 2) [1,3) 3) (1,3) 4) [1,3]	pace R then $E' = $	(01)		
	d) Define :Connected sets		(01)		
	e) Define : Limit Point		(01)		
	f) Check whether the statement is tr	ue or false: If $A \subseteq B$ then $A^{\circ} \subseteq B^{\circ}$			
	g) Define : Metric Space		(01)		
	 h) Define Continuity in Metric space i) Find A° for A = (0,4] 	2	(01) (01)		
	 i) Find A° for A = (0,4] j) Check whether the statement is tr subset of the real line is compact. 	-			
	k) Let $X = \mathbf{R}$ and $A = \emptyset$ then find <i>in</i> l) Show that the open interval (0,1)		(02) (02)		

Attempt any four questions from Q-2 to Q-8

Q-2	a)	Attempt all questions Let(X, d)be a metric space and $d_1: X \times X \rightarrow \mathbf{R}$ defined by	[14] (06)
	,	$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ then prove that d_1 is also a metric on X.	
	b)	Let (X, d) be a metric space and $E \subset X$. If 'a' is a limit point of E then show that there are infinitely many points of E in every neighborhood of 'a'.	(04)
	c)	Define: Closed Set .Show that every finite subset of metric space is closed.	(04)
Q-3		Attempt all questions	[14]
	a)	Prove: i) Arbitrary union of open sets of metric space is an open set.ii) Finite union of finite number of closed sets of metric space is a closed set.	(06)
	b)	Show that $(C[0,1], d)$ is metric space where $d(f,g) = \int_0^1 f(x) - g(x) dx$.	(05)
	c)	If (X, d) is a metric space and $A, B \subset X$ then show that $(A \cup B)' \subseteq A' \cup B'$.	(03)
Q-4	``	Attempt all questions	[14]
	a)	Let <i>A</i> , <i>B</i> be two subsets of metric space (<i>X</i> , <i>d</i>) then prove the following: i) $A = \overline{A}$ if and only if <i>A</i> is closed. ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$	(06)
	b)	Let $E_n = (c - \frac{1}{n}, c + \frac{1}{n})$ where $c \in N$ is constant and $n \in N$. Compute	(05)
		$\bigcup_{n=1}^{\infty} E_n$ and $\bigcap_{n=1}^{n} E_n$ and determine whether they are open or closed?	
	c)	Check whether the function $d(x, y) = x^2 - y^2 $ for $\forall x, y \in \mathbf{R}$ is metric space over \mathbf{R} or not.	(03)
Q-5		Attempt all questions	[14]
-	a)	Let (X, d) be a metric space. If $\{x_n\}$ is convergent sequence of points of X then show that $\{x_n\}$ is cauchy sequence in X. What can you say about its	(06)
	b)	converse?Justify. Let (X, d_1) and (Y, d_2) be any two metric space, then prove that $f: X \to Y$ is	(05)
		continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for every $A \subset X$.	(02)
	C)	Let $f:[a,b] \rightarrow [a,b]$ be differentiable, assume that $ f'(x) \le k$ where $x \in X$ and $k < 1$. Show that f is contraction mapping.	(03)
Q-6		Attempt all questions	[14]
•	a)	Prove that any contraction mapping f of non-empty complete metric space	(06)
	b)	(X, d) into itself has a unique fixed point. Let (X, d_1) and (Y, d_2) be any two metric space, then prove that $f: X \to Y$ is	(06)
	,	continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.	
	c)	Give an example of subsets A and B of metric space R such that $(A \cap B)' \neq A' \cap B'$.	(02)
0-7		Attempt all questions	[14]

Q-7 Attempt all questions

- [14]
- a) Let (X, d) be a complete metric space and $\{F_n\}$ be a decreasing sequence of (07) non-empty closed subsets of X such that $d(F_n) \to 0$ as $n \to \infty$, then show that $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

- b) Show that every compact subset A of metric space (X, d) is bounded. (04)
- c) Which of the following sets are open sets?Justify.
 - i) $A = \{1, 2, 3, 8\}$ on **R**
 - ii) $A = \{(x, y) \in \mathbb{R}^2 : y > x\}$ on \mathbb{R}^2
 - iii) A = (0,1) on **R**

Q-8 Attempt all questions

[14] (07)

(03)

- a) For a non-empty subset A of metric space (X, d) show that the function $f: X \to \mathbf{R}$ defined by f(x) = d(x, A), $x \in X$ is uniformly continuous. Also show that f(x) = 0 if and only if $x \in \overline{A}$.
- **b**) Let *A* be connected subset of metric space *X* and *B* be a subset of *X* such that $A \subseteq B \subseteq \overline{A}$ then show that *B* is also connected. (05)
- c) Show that the sets A = (1,2) and B = (2,3) are separated sets of metric (02) space **R**.

